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Abstract. Component-based design can help manage the complexity of high-performance scientific simulations,
where it has become increasingly clear that no single research group can effectively develop, select, or tune all of the
components in a given application and that no single tool, solver, or solution strategy can seamlessly span the entire
spectrum efficiently. Component approaches augment the benefits of object-oriented design with programming lan-
guage interoperability, common interfaces, and dynamic composability. Our work addresses the challenge of how
to compose, substitute, and reconfigure components dynamically during the execution of a scientific application.
The goal is to make suitable compromises among performance, accuracy, mathematical consistency, and reliability
when choosing among available component implementations and parameters. As motivated by high-performance
simulations in combustion, quantum chemistry, and accelerator modeling, this paper discusses ideas on computa-
tional quality of service (CQoS) — the automatic selection and configuration of components to suit a particular
computational purpose. We discuss the synergy between component-based software design and CQoS, with em-
phasis on features of the Common Component Architecture that provide the foundation for this work. We introduce
the design of our CQoS software, which consists of tools for measurement, analysis, and control infrastructure, and
we discuss directions of future work.

1 Introduction

As computational science progresses toward ever more realistic multiphysics and multiscale applications, the complex-
ity is becoming such that no single research group can effectively develop, select, or tune all of the components in a
given application, and no single tool, solver, or solution strategy can seamlessly span the entire spectrum efficiently. A
goal of component technology is to help manage this complexity by augmenting the benefits of object-oriented design
with programming language interoperability, dynamic composability, and common interfaces for particular function-
alities [65]. Interchangeable components based on varying characteristics such as their underlying models, precision,
space requirements, execution performance, and reliability were key features of the vision published in McIlroy’s 1968
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seminal paper on software components [48]. Common component interfaces enable easy access to suites of indepen-
dently developed algorithms and implementations, and dynamic composability facilitates switching among different
implementations during runtime. The challenge then becomes how to automatically make sound choices from among
the available implementations and parameters, with suitable tradeoffs among performance, accuracy, mathematical
consistency, and reliability. Such choices are important both for the initial composition and configuration of an appli-
cation and for adaptive control during runtime.

We are addressing this challenge by developing tools for computational quality of service (CQoS) [52], or the
automatic selection and configuration of components to suit a particular computational purpose. CQoS embodies the
familiar concept of quality of service (QoS) in networking as well as the ability to specify and manage character-
istics of the application in a way that adapts to the changing computational environment. QoS research issues for
scientific component software differ in important ways from more common QoS approaches that often emphasize
system-related performance effects such as CPU or network loads to implement application priority or bandwidth
reservation in networking. Although performance is a shared general concern, high efficiency and parallel scalabil-
ity are more significant requirements for scientific components, along with functional qualities, such as the level of
accuracy achieved for a particular algorithm.

The remainder of this paper is organized as follows: motivation, component-based design, related work, CQoS ar-
chitecture, preliminary investigations, and conclusions. More specifically, Section 2 introduces three high-performance
scientific applications that motivate this work: parallel partitioning of meshes in combustion simulations, evaluation
of molecular wave functions in quantum chemistry models, and the solution of linear systems arising in high-energy
accelerator simulations. Section 3 discusses the synergy between component-based software design and CQoS and
provides an overview of the Common Component Architecture (CCA) [4, 6, 15] — a component model that provides
the foundation for this work and has been specifically designed for high-performance scientific computing. Section 4
describes related work. Section 5 introduces the design of our CQoS software infrastructure, which consists of two
main groups of tools: (1) measurement and analysis infrastructure and (2) control infrastructure. Our preliminary in-
vestigations into adaptive strategies, performance analysis, and basic interface semantics are described in Section 6.
Finally, Section 7 discusses conclusions and directions of future work.

2 Motivating Scientific Applications

Computational quality of service (CQoS) can generally be interpreted as the ability of a system to solve a scientific
problem with the best available hardware and software tools. In scientific computing, “best” has typically meant robust
and fast; the tools are expected to solve problems of varying degrees of difficulty consistently, reliably, and efficiently.
However, because scientific problems have become increasingly complex, it is impossible to design a single, efficient
solution strategy that seamlessly spans the entire spectrum of problems.

Hence, the following techniques are primarily used for improving the CQoS of scientific computations: adapta-
tion and modularization. Adaptation typically exploits temporal and spatial problem-specific features to concentrate
computational resources in critical regions. Although adaptation can reduce the computational resources needed for
a given problem to a fraction of static techniques, adaptation introduces a high degree of unpredictable dynamics.
Modularization exploits segregation in coupling — loosely coupled subproblems are identified and solved by efficient,
highly specialized software. Suitable software components for the given problem are typically selected and compiled
before the program is executed, so that modularization is commonly thought of as being static.

Most efficient scientific applications currently use adaptation or modularization. A framework that allows the si-
multaneous use of both techniques is nonexistent as far as we know. But there is a previously unexploited symbiotic
relation between the two. To exploit this symbiosis for improving efficiency and, hence, the CQoS for dynamic scien-
tific problems, we introduce method adaptation: During decision points of an executing application, the most suitable
solution technique is dynamically selected and configured based on the current state of the problem. Solution tech-
niques can easily be implemented as software modules (or components), thereby enabling method adaptation through
dynamic reconfiguration of the code. This can be accomplished either by dynamically setting configurable parameters
or replacing modules with more appropriate ones. Replacement modules must exist in a component repository and
do not necessarily need to be instantiated during the beginning of a given simulation. Such an on-demand strategy
dispenses with the need to collate all available software into a single huge and difficult-to-maintain library. Further-
more, this piecemeal approach to adaptation is scalable in terms of the number and variety of modules that can be
accommodated in such a manner.
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Previous work [10,55,64,67] suggests that it is indeed possible to develop a divide-and-conquer approach that uses
CQoS for composition, substitution, and reconfiguration of components within long-running simulations. In Section 5
we introduce ideas for such software infrastructure, where our approach leverages related work (e.g., [28, 44]) when
appropriate. We suggest how to apply these tools to three scientific simulations, the details of which are very different.
Part of our research is to identify the common as well as the application-specific aspects of these problems as a first
step toward designing a strategy that will make CQoS-enabled simulations of the three problems a reality.

Three parallel scientific applications that motivate this research represent different computational science disci-
plines and involve either partitioning, resource management, or linear solvers. This section describes each and men-
tions our associated plans.

Partitioningmeshes in combustion simulations. The Computational Facility for Reacting Flow Science [53], funded
by the U.S. Department of Energy’s Scientific Discovery through Advanced Computing (SciDAC) initiative [68], is
developing a CCA toolkit for simulating flames on block-structured adaptive meshes. For large and realistic sim-
ulations executed on parallel computers, the mesh is partitioned and distributed across processors. Unfortunately, no
single partitioning algorithm is suitable for all computer and application states [62]. A meta-partitioner [64] selects and
configures the most suitable partitioner based on system and application state. In this context, the dynamic selection
of partitioning algorithms for improving scalability corresponds to method adaptation. Instant mesh characterization
[63, 64] and rigorous partitioner characterization with respect to partitioner parameters [37] allow for a mapping be-
tween application state and partitioner configuration. Since the adaptive mesh changes as the simulation evolves, this
mapping is performed repeatedly. To implement the meta-partitioner, we envision encapsulating each partitioner in a
software component and then dynamically switching these components automatically based on the application state.

Resource management in quantum chemistry simulations. Quantum chemical computations typically involve mul-
tiple subproblems [41], each of which places significant demands on system resources. The predominant methods for
molecular wave function determination require the computation of large numbers of integrals over atom-centered basis
functions, followed by the optimization of coefficients for forming molecular orbitals from these atom-centered func-
tions. A typical resource competition arises in this case, as memory must be partitioned between the atomic integral
computation, where the storage of intermediate quantities reduces computational effort, and the molecular orbital de-
termination, where the storage of previous coefficient vectors speeds the convergence of iterative procedures. To date,
resource distribution has been statically defined by the user prior to execution of the task, requiring an experienced
user who can make accurate estimates of resource demands and relative performance costs. Clearly, the consequences
of reliance on the end-user for resource distribution are lower computational efficiency and lost processor cycles.
The addition of dynamic resource adaptation to our existing component modules will regain lost system time and en-
able the automation of large numbers of tasks, as required in complex multiscale simulations, while maintaining high
computational efficiency.

Solving linear systems in high-energy accelerator simulations. Solving linear algebraic systems of equations often
dominates the overall execution time of large-scale simulations based on partial differential equations (PDEs), includ-
ing some facets of accelerator modeling. In this context, CQoS focuses on selecting and configuring parallel linear
solver components [60] under development by the Terascale Optimal PDE Simulations (TOPS) project [17], based on
the context of the overall simulation and the properties of the coefficient matrix that defines the linear system. Because
the properties of linear systems in time-dependent and/or nonlinear applications may significantly change during the
course of a given simulation, CQoS-enabled adaptive multimethod solvers have promise to improve robustness and
reduce overall time to solution [10, 11, 50]. Our approach will leverage related work by Eijkhout and Fuentes [28] on
matrix characterization and metadata and by Bhowmick et al. [8] on machine learning.

Because these problems appear to have little in common, we expect the logic involved in characterizing them and
choosing efficient solution strategies to be vastly different. However, we believe that the infrastructure for analyzing
and characterizing each problem (the mesh, molecular wavefunction computation, and linear system) and determining
and invoking solution strategies will indeed be similar. It is this (conjectured) separation of logic and infrastructure
that we seek to verify in this work and, if verified, exploit to enable CQoS in these very different problems.
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3 CQoS and Component-Based Software Design

Complexity generally succumbs to modularity; being able to identify loosely coupled subproblems allows the focusing
of targeted strategies to a particular problem instance. Sometimes, individual strategies may be combined into general
ones whose behavior may be made to vary continuously in a parametric fashion. This realization has led to libraries
that embody various tools and algorithms to address a particular class of problems, with each being appropriate for
problems of a given type. However, the library approach is quickly approaching its limits of applicability for two
reasons:

1. Maintaining a collection of algorithms and tools under a single roof poses a daunting challenge and is not a
scalable approach if the bulk of contributors are transient collaborators.

2. The choice of algorithm/tool to use for a given problem instance is typically left to the user (often, not an expert
in the field), who invariably chooses the most reliable, if inefficient, approach.

Each problem can place a significant hurdle to addressing the kind of scientific questions that ultrascale computing
can enable.

The first problem has a conceptually simple solution: instead of a monolithic approach, one maintains a “stable” of
algorithms, individually implemented as independent or peer components. Component-based software architectures
can reliably enable such an approach. Further, many component-based architectures allow adaptive or dynamic re-
composition of codes during runtime so that components best suited to the problem at hand can be loaded to replace
or reconfigure the current solution infrastructure. This feature simply and elegantly solves the problem of bringing in
the tools best suited to the problem. Choosing the appropriate tools (or an appropriate set of parameters to configure
a general tool) thus becomes the main hurdle to fashioning a dynamic and adaptive strategy. The choice will typically
be made predicated on accuracy, stability, efficiency, or performance −− tangible metrics that can be melded into ob-
jectives for computational quality of service (CQoS). CQoS addresses the question of formulating and designing the
control system that makes the choice, with suitable tradeoffs among performance, accuracy, mathematical consistency,
and reliability.

The potential of CQoS is not without challenges. Parallel execution affects all criteria in component-dependent
ways. Understanding the relationships is difficult, as is representing this knowledge in some form. Dynamic CQoS
implies a dynamic awareness of computational state and execution history. Runtime observation must be implemented
in some manner and necessarily results in (nonfunctional) overhead in the computation, imposing a computational
performance tradeoff that may or may not be important depending on objectives. These problems are difficult enough
from the perspective of a single component. Understanding component compositions and full multicomponent appli-
cations is significantly more complex. The optimization problem is intractable, in general. However, the approach of
component-based software development makes CQoS conceivable. That is, the framework used for component devel-
opment, composition, application construction, and execution provides an architecture for CQoS engineering. Thus,
we can design tools that support CQoS implementation, that are consistent with the component software methodology
and may even be implemented by using component technology. In the following, we discuss goals and approaches for
such CQoS tools that we are developing.

The Common Component Architecture. Our work employs the Common Component Architecture (CCA) [4,6,15],
which has been designed specifically for the needs of parallel, scientific high-performance computing in response to
limitations in this domain of other, more widely used component approaches. A comprehensive description of the
CCA, including a discussion of how it differs from other component models, is available [6]; here we present a brief
overview of the CCA environment, focusing on the aspects most relevant to CQoS infrastructure.

The specification of the Common Component Architecture [14] defines the rights, responsibilities, and relation-
ships among the various elements of the model. Briefly, the elements of the CCA model are as follows:

– Components are units of software functionality that can be composed together to form applications. Components
encapsulate much of the complexity of the software inside a black box and expose only well-defined interfaces.

– Ports are the abstract interfaces through which components interact. Specifically, CCA ports provide procedural
interfaces that can be thought of as a class or an interface in object-oriented languages, or a collection of subrou-
tines, or a module in a language such as Fortran 90. Components may provide ports, meaning that they implement
the functionality expressed in a port (called provides ports), or they may use ports, meaning that they make calls
on a port provided by another component (called uses ports).
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– Frameworks manage CCA components as they are assembled into applications and executed. The framework is
responsible for connecting uses and provides ports without exposing the components’ implementation details.
The framework also provides a small set of standard services that are available to all components. Several frame-
works that implement the CCA specification and support various computing environments have been developed.
Ccaffeine [1] is used by the applications discussed in Section 2.

The CCA’s general port mechanism, along with various specific ports, make it possible for us to address these
CQoS issues. In particular, CCA-defined service ports, such as ConnectionEventService, BuilderService,
and AbstractFramework, are required of all frameworks. ConnectionEventService notifies components
when connections are made and broken. BuilderService and AbstractFramework provide a means to pro-
grammatically assemble and modify applications (instantiate and destroy components, make and break connections
between ports) and a means for arbitrary code to become a CCA framework. These services allow dynamic monitoring
and control of component applications by CQoS infrastructure, for example, enabling the implementation of control
components that swap application components based on CQoS control laws [33, 52].

4 Related Work

Adaptive software for scientific computing is clearly an area of emerging research, as evidenced by a number of recent
projects and related work [13, 16, 22–25, 27, 28, 32, 38, 39, 43, 44, 47, 57, 59, 61, 66, 69–73, 77]. In general, support
for assembly, substitution, and reconfiguration requires the identification of relevant characteristics of components
and assessment of application behavior at runtime. The former necessitates the availability of higher-level semantic
information that is machine processable; the latter requires some form of runtime monitoring. This section summarizes
a number of efforts from the literature that address one or both of these issues.

Three approaches of interest for specifying semantic information are models, contracts, and service-level agree-
ments. Furmento et al. [30] as well as Gu and Nahrstedt [31] discuss performance models and their use in overall
component application assembly at runtime within the context of distributed environments; Beugnard et al. [7] define
a general model of software contracts and discuss approaches for making components contract-aware. Similarly, the
SAMcode model of adaptable mobile agents [2] allows the specification of contracts — consisting of one precondition
and one postcondition — for each adaptable method. Violations are used to select between different implementa-
tions of a method at runtime. The GlueQoS work of Wohlstadter et al. [76] focuses on mediating quality-of-service
requirements — specified as assertions — between clients and Web services. Bennett et al. [5] discuss the need
for service-level agreements for defining the terms and conditions of use, with agreements providing a minimum of
coupling between components. They also emphasize the importance of characterizing relevant component features
to ensure both the correct use and provision of services. Raje et al. [54] describe a QoS framework for distributed,
heterogeneous components and provide a catalog of QoS metrics [12]. The Software-Implemented Fault Tolerance
(SIFT) environment for Adaptive Reconfigurable Mobile Objects of Recovery (ARMOR) processes [74] relies on
their model for functional reconfiguration to adjust application behavior to meet dependability requirements. In this
case adaptation is accomplished through user-specified assertion checks at critical execution points and the use of
microcheckpointing to adjust application state accordingly. In addition, Loyall et al. [45] use semantic information in
distributed object systems. Hence, the usefulness of models, contracts, and service-level agreements mechanisms for
defining component and application semantics has been demonstrated in a variety of contexts.

Relevant techniques for runtime behavioral monitoring can be directly or indirectly dependent upon events. Reiner
and Pinkerton [56] explore dynamically changing control parameters to improve operating system performance and
use experiments to determine improved settings. They develop a methodology for adaptive tuning as well as algorithm,
policy, and (fixed) parameter selection. Whisnant et al. [74] rely on human intervention to deal with reconfiguration
after a problem is detected at runtime. Feather et al. [29], however, use event monitoring of behavioral deviations and
changing environmental conditions to reconcile the intended system behavior with individual requirements at runtime.
In these cases, monitoring an application at runtime involves checking control parameters and monitoring events,
including application failure.

Unlike these efforts, our approach relies on high-level interface specifications and technologies tailored for sci-
entific computing. Quality-performance tradeoffs for parallel scientific simulations will be made using the Common
Component Architecture (CCA). Because the glue that binds CCA components together is a set of common, agreed-
upon interfaces, multiple component implementations conforming to the same external interface standard are interop-
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erable. The common interface specifications provide the flexibility to accommodate different algorithms, performance
characteristics, and coding styles in multiple implementations.

5 CQoS Software Architecture

This section describes the design of the CQoS software infrastructure and examines implementation approaches for
the principal subsystems. Figure 1 illustrates our vision of how CQoS infrastructure will help to analyze, select, and
parameterize components for the motivating applications introduced in Section 2. This diagram shows the two main
facets of our CQoS tools: (1) measurement and analysis infrastructure, which combines performance information and
models from historical and runtime databases along with interactive analysis, including statistical analysis and machine
learning technology (further discussed in Section 5.1); and (2) control infrastructure, which encompasses decision-
making components that evaluate progress based on domain-specific heuristics and metrics, along with services for
dynamic component replacement (further discussed in Section 5.2). These two groups of CQoS tools, which may
be employed both for initially composing an application and for runtime control, are largely decoupled and interact
primarily through a substitution assertion database. Preliminary research that has led to this approach is discussed
in [33, 46, 52, 55, 67].

Analysis Infrastructure
Performance monitoring, 
problem/solution characterization, 
and performance model building

Control Infrastructure
Interpretation and execution of control laws to 
modify an application’s behavior

Performance
Databases

(historical & runtime)

Interactive Analysis 
and Model Building

Substitution
Assertion
Database

Instrumented
Component

Application Cases

Control System
(parameter changes and
component substitution) Scientist can 

provide decisions 
on substitution and 
reparameterization

CQoS-Enabled
Component Application

Component A

Component B

Component C

Component
Substitution Set

Scientist can 
analyze data 
interactively

Fig. 1. Overview of CQoS infrastructure.

At the very outset, we realize that a CQoS-enabling control system for high-performance scientific computing
must adhere to two constraints:

1. Enabling CQoS in a given component-based scientific application cannot require extensive changes to the code.
In fact, anything more than trivial changes may render the effort unpalatable to most application teams. Many
scientific components have sensors, variables that characterize the current performance of a component (for ex-
ample, the number of iterations taken to solve a linear system given a desired error) and actuators, configuration
parameters that can change the behavior of a component (for example, a preconditioner that the solver might use).
Enabling CQoS might, at most, require that such sensors and actuators be exposed in a CQoS-blessed way. Note
that this terminology is borrowed from [44].

2. CQoS has to be enabled in a strictly additive manner; that is, a given component assembly comprising a scientific
simulation may be augmented with a CQoS-enabling component to bring the advantages of CQoS to bear. If a
CQoS-enabled scientific simulation is shorn of its CQoS-enabling components, however, the code should still
function and provide correct results, if at a lower efficiency.

In addition, our CQoS system will not impose restrictions on the types of tools used for instrumentation or mea-
surement, algorithms for decision making, or mechanisms for switching between components. We will define the flow
of events when CQoS ports are connected, the mechanisms for communicating the need to run an optimizer at a given
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instance, and the way the decisions made by an optimizer are interpreted by those components that are connected to
its CQoS port. In short, our CCA effort will assist in defining the protocol for interactions with the CQoS substrate
and ways to automate the creation of CQoS-aware component ensembles.

5.1 Measurement and Analysis Infrastructure

As shown in Figure 2, infrastructure for measurement and analysis supports the collection of performance data and
subsequent processing through statistical analysis and machine learning techniques for the purpose of creating per-
formance models for key components. The performance models are used to develop application-specific control laws,
which are stashed in a substitution assertion database and then employed by the complementary CQoS control infras-
tructure, as discussed in Section 5.2.

Application
Driver

Component

Logger
Measurement
Component

Modeling
Information

(metadata,
models, viz)

Performance
Databases

(historical & runtime)

Verification
& Validation

Machine
Learning

Iterative
Analysis and 

Model Building

Interactive
Analysis

Interface to Control Infrastructure

Substitution
Assertion
Database

Performance-
Related Proxy

Scientist
can analyze 
data
interactively

Fig. 2. CQoS analysis infrastructure, which interfaces to the complementary CQoS control infrastructure primarily via a substitution
assertion database.

Performance measurement. The input to the analysis consists of performance measurements, along with application-
specific problem characteristics and metrics. This data will be collected by using the TAU [58] performance system to
generate performance monitoring proxies for components, taking advantage of fully automatic instrumentation at the
component interface level, at the message-passing level, and within each component. In addition, application-specific
metrics can be monitored by TAU’s user event mechanism. This holistic view of performance data will facilitate
assessment of an application’s performance characteristics at any point during execution.

A performance database will store performance data gathered from prior executions, or trials, of the application.
The metadata for a trial will include fields describing the particular machine, compilation parameters, application-
specific runtime parameters, and any other relevant parameters that describe a unique application instance. We will use
TAU’s PerfDMF [34] database format to store and access performance data. A performance knowledge component
will provide interfaces for querying historical performance data.

Performance analysis. The analysis portion of the CQoS infrastructure will use the performance database to discover
significant performance features of applications by using statistical analysis and machine learning tools. We will
employ PerfExplorer [35], which provides a single common interface to different general-purpose tools, including the
R system [36], WEKA [75], and Octave [26], and will be extended with more tools in the future.

Performance models. Generating component modeling information is an important part of the CQoS effort. The
objective is to translate information about a component’s computational properties, as may be captured in analytical
models and empirical observations obtained from parametric experimentation, into predictive CQoS models that can
be used to evaluate CQoS expectations (assertions on current CQoS state) and direct control decision (assertions on
future CQoS state).
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1. In an analytical approach, metrics describing a given type of problem are computed for a particular instance. For
example, this approach may be used in the selection of partitioners; an incoming mesh (actually, a block-structured
adaptive mesh) is evaluated for its “partitionability” for load-balancing and communication, and a partitioner is
selected and configured accordingly [37, 63, 64]. Similar work is under way for the characterization of linear
solvers [8].

2. In an empirical approach, the performance of various components is continuously monitored and checked against
an “accepted” norm. This approach is employed when various implementations are equally acceptable (from
mathematical and scientific points of view), and the choice is made based on performance, such as the suitability
of a particular algorithm to the problem at hand (which in most simulations evolves in time), the suitability of
an implementation of the algorithm to the machine architecture, and so forth. In such cases, one has to define
a baseline performance and codify it in a performance model, which is then used as the norm. Any significant
deviations from the norm trigger the control law and a modification of behavior [55]. This work builds on our work
in performance data mining, implemented by the PerfExplorer framework, which supports cluster, correlation, and
comparative analysis techniques.

The knowledge represented in the CQoS models, as derived from the analytical and empirical analysis, should
be as robust as possible to provide good predictive power but also as compact as possible to be quickly evaluated
during execution. The CQoS models will be stored in the substitution assertion database for later use as part of an
application-specific control law, which is further discussed in Section 5.2.

5.2 Control System

The role of the control subsystem of the CQoS architecture is to evaluate progress based on domain-specific heuristics
and to provide mechanisms for dynamic component (re)configuration or replacement. CQoS addresses the question
of formulating and designing the control system that delivers the required performance, while maintaining a suitable
compromise among performance, accuracy, consistency, and robustness. We consider this as a sum of two loosely
coupled parts:

1. a control law that characterizes the problem presented to it and chooses a suitable tool to deal with it, and
2. a control infrastructure that implements the dictates of the control law.

Control laws. Control laws are the core of the control system. Each control law, as developed during the perfor-
mance analysis phase introduced in Section 5.1, is in charge of characterizing a problem, characterizing the elements
it manages, and establishing a mapping between the two. We expect each control law to be tied (in the mathemati-
cal, not the software sense) to the elements (algorithms/tools) that it manages (e.g., the mesh partitioners, molecular
wavefunction computations, and linear solvers introduced for the motivating scenarios in Section 2). Because we en-
vision that the component codes will be dynamically reconfigurable, the elements that a control law manages will not
generally be available for querying at runtime; thus, this information will have to be externally available. While this
situation requires an abstract categorization of the elements being managed (e.g., a linear solver may be able to handle
nonsymmetric systems with a moderate spectrum of condition numbers), it also enables the control law to exist as an
independent entity in a substitution assertion database, as introduced in Section 5.1.

The control law’s net output will be recommendations about appropriate tools to be used; implementing the recom-
mendation is left to the control infrastructure. Such recommendations may range from merely modifying parameters
in a currently instantiated tool/algorithm/component to outright replacement of components. In a parallel context, out-
right replacement of components will require a global view of the problem, thus incorporating elements of the parallel
machine’s configuration and characteristics in the decision process. Also, more generally, the control law will have to
embody some degree of closed-loop feedback to maintain stability. Similar issues in recommender systems have been
addressed by Houstis et al. [32].

Control infrastructure. Figure 3 depicts an overview of our approach for control infrastructure, which has the func-
tion of implementing the control law in component-based software. We view the control infrastructure as a collection of
components “decorating” a component-based scientific simulation to CQoS-enable it. Two key parts are a substitution
and reparameterization decision service and a replacement service. As introduced in [33], the dynamic replacement
service arranges for the seamless replacement of one component implementation by another that provides the same
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Fig. 3. CQoS control infrastructure, which interfaces to the complementary CQoS analysis infrastructure primarily via a substitution
assertion database that contains control laws.

functionality but has different performance features. The replacement service, which provisions and deploys the new
component, can be invoked by proxy either on the programmer’s behest or triggered by the substitution decision ser-
vice. The substitution decision service automates decisions about component replacement by applying the control law,
which resides in the substitution assertion database and may be supplied either by an application scientist or by a
machine learning module. A similar approach has been used by [44].

We note that the substitution/replacement decision service itself runs in parallel in the application. Depending on
the component’s CQoS model, local and global management operations will be performed, for example, to collect and
evaluate current CQoS state, determine global CQoS metrics, and reach a consensus decision on replacement. Figure 4
illustrates this situation.

replacement
decisions

engage
control

Substituion
Assertion
Database

components

CQoS Management System

Component Applicationprocess

component CQoS proxy

Fig. 4. CQoS infrastructure for replacement of components.

5.3 Application Interfaces

A central objective of the design and implementation of the CQoS infrastructure is to minimize the changes required
for application components to take full advantage of CQoS capabilities for monitoring, analysis, and control. In this
section we present an overview of our approach to achieving this objective.

Component proxy ports. As shown in Figures 2 and 3, proxy components can help in the design of CQoS-aware
components. A proxy component provides a convenient mechanism to interpose performance instrumentation between
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a uses and a provides port connection between two components. The TAU component infrastructure can generate proxy
components automatically and on the fly by parsing the interface definition or the source code of a component. By
interposing a proxy between a caller (uses port) and a callee (provides port), not only can we measure the performance
associated with a port, but we can also tap into a wealth of application-level information, such as method arguments
that flow through the caller-callee edge of a component interconnection graph. Moreover, by examining the calling
stack of instrumented components using TAU’s callgraph profiling, we can deduce the dynamic connections between
components.

Proxy components will be augmented with CQoS tracking and component reparameterization/substitution capa-
bilities. When a CQoS port of a proxy is not connected, its role will be restricted to performance instrumentation and
measurement. When a proxy’s CQoS port is connected to an optimizer component, the proxy will generate events
to activate the performance selection capabilities of the optimizer. By reading the choice of an appropriate port on a
CQoS port, the proxy will be able to connect a caller’s uses port to the chosen provides port. Thus, a proxy will act
as a switch connecting a uses port to an appropriate provides port at runtime. This switching among components will
need to be coordinated with a global service to ensure that it is carried out in all contexts of the component assembly.

In this manner, an application composed of CCA components will be CQoS enabled by using proxy components
without any changes to the source code of the individual components. By building the CQoS infrastructure with
reusable components and ports, we will also support the scenario where an application developer decides to build
CQoS-aware intelligent components that do not rely on proxies but instead directly connect to a CQoS port of an
optimizer component.

Issues in interface semantics. To make the vision of interchangeable components a reality for scientific software, we
must take that which is implicit — or in textual documentation — and make it explicit in a concise, human-readable and
machine-processable form. Hence, an important goal is to identify and support relevant component interface semantics
for expressing characteristics and constraints needed for dynamic adaptation.

This work involves investigating the expressiveness and suitability of general-purpose interface semantics specifi-
cation mechanisms for automated behavioral adaptation tools applied across disciplines within computational science.
Therefore, we will investigate behavioral and quality-of-service specifications for issues such as support for algorithm
characteristics and constraints, precision, and result quality. Stable attributes can include whether an algorithm is im-
plicit or explicit, whether the storage order of arrays is exchanged through its interfaces, or whether a two-dimensional
or three-dimensional space is represented. We expect stable characteristics such as these to be expressible in an im-
plementation language-neutral form, such as the Scientific Interface Definition Language (SIDL) [18], while dynamic
characteristics will require representation in a more flexible format.

We will extend the SIDL/Babel toolkit [18] with constructs to express the static information. Preliminary work has
already enhanced the basic syntactic descriptions of the component’s application programming interface (API) through
the addition of nonnegotiable behavioral contracts [20,21]. We will similarly extend SIDL to support the specification
and inheritance of quality metrics and requirements. For example, a general interface for linear system solution may
be annotated with CQoS metrics for execution time and accuracy. An interface for a specific linear system solution
approach, such as an iterative solver, would inherit the CQoS metrics from its parent and may define new ones, such
as the number of iterations or desired accuracy. Another descendant of the general linear solver interface, for example
an interface for direct solvers, would naturally not have the number of iterations but may need to specify the cost of
reordering.

Work on interface semantics addresses the need to more explicitly define the behavior and quality of services
in a concise, human-readable and machine-processable form. Integrating static information into SIDL and dynamic
information into the control infrastructure will enable runtime adaptation according to a variety of behavioral and
service quality criteria.

5.4 A CQoS Testbed

To motivate and validate the CQoS infrastructure, we will develop a CQoS Testbed with key components drawn from
the motivating scenarios introduced in Section 2. Because the goal of CQoS infrastructure is to be as automatic as
possible without taking away developers’ ability to specify the analysis and control decisions, the abstractions that
constitute the infrastructure must accommodate both automation and human intervention at every level. During early
phases of this work, a CQoS component or application will likely rely heavily on specialized code, with increased
automation being incorporated in later phases. We must define both pragmatic and generalizable interfaces for CQoS
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that meet these requirements. We thus will build a testbed of components taken directly from relevant scientific appli-
cations, or reasonable facsimiles of such components for the purpose of experimenting with interface abstractions for
CQoS that will be mainstreamed into application codes.

6 Preliminary Investigations

We next discuss preliminary work that has led to this approach, including adaptive strategies, performance measure-
ment and analysis, and software quality through contracts.

6.1 Adaptive Strategies

Preliminary work on the development of adaptive strategies for parallel partitioning and linear solvers partially moti-
vates this CQoS research.

Adaptive partitioning. We have employed a CQoS philosophy to improve the scalability of highly dynamic adaptive
mesh refinement applications. As dynamic and localized features in the solution require higher mesh resolution for
sufficient numerical accuracy, the mesh adapts dynamically to accommodate this. Parallel implementations of such
adaptive applications present significant challenges in dynamic resource allocation as the overall efficiency is limited
by the ability to partition the underlying mesh at runtime to expose all inherent parallelism, minimize communication
and synchronization overheads, and balance load.

No partitioning technique performs the best for all combinations of application and computer system. Even worse,
the best partitioner for a particular time frame of a parallel simulation might be the worst for the next time-frame [62].
Because the basic requirement for a partitioning method is dependent on the size and composition of the mesh, this
requirement changes dynamically as the mesh adapts to the solution. By taking these dynamic conditions explicitly
into account, the scalability for large, realistic simulations can be significantly improved. To meet the challenges in
dynamic resource allocation inherent in parallel adaptive codes, we introduce another level of adaptation: adaptive
partitioning, meaning dynamic and automatic switching of partitioning techniques, based on the current run-time
state. The framework allowing this is called a meta-partitioner.

The meta-partitioner is a general framework for implementing adaptive partitioning in scientific, adaptive applica-
tions. It samples the current state of the application and the computer system in real-time and maps these samples onto
a point in a partitioner-centric classification space (PCCS) [63,64]. This space is spanned by three axes corresponding
to the three primary trade-offs inherent in the partitioning problem: communication vs. load balance, quality vs. speed,
and data migration optimization. The application sample is based on mathematical properties of the mesh, while the
sample of the computer system is based on current resource use and availability. The samples are translated into penal-
ties that determine the location in the PCCS. Based on the location, one of the pre-characterized partitioning algorithms
is selected and configured. This requires a set of partitioners to be thoroughly tested and characterized with respect to
input parameters versus output quality metrics such as load imbalance and communication [37]. Our collaborators at
Uppsala University in Sweden are characterizing the algorithms in the partitioning library Nature+Fable [62] by
analyzing the complex-metric results from millions of partitioned real-world meshes.

Adaptive linear solvers. This research in CQoS has been partially motivated by large-scale scientific simulations
based on partial differential equations [33, 49], with emphasis on multimethod linear solvers in the context of parallel
computational fluid dynamics, including flow in a driven cavity and compressible Euler flow (see [51] for details).
Both applications employ pseudo-transient continuation with Newton methods, where the linearized Newton systems
become progressively more difficult to solve as the simulation advances due to the use of pseudo-transient continu-
ation [40]. Consequently both are good candidates for the use of adaptive linear solvers [9, 10, 50] where the goal is
to improve overall performance by combining more robust (but more costly) methods when needed in a particularly
challenging phase of solution with faster (though less powerful) methods in other phases. We designed parallel adap-
tive solvers with the goal of reducing the overall execution time of the simulation by dynamically selecting the most
appropriate method to match the characteristics of the current linear system. A key facet of developing adaptive meth-
ods is the ability to consistently collect and access both runtime and historical performance data. We implemented
a prototype component infrastructure that supports performance monitoring, analysis, and adaptation of important
numerical kernels, such as nonlinear and linear system solvers [51]. We defined a simple, flexible interface for the
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implementation of adaptive nonlinear and linear solver heuristics. We also provide components for monitoring (based
on TAU), checkpointing, and gathering of performance data.

6.2 Performance Measurement and Analysis

The TAU [58] performance system, particularly as applied to performance engineering technology for component
software, provides a solid foundation for CQoS measurement and analysis infrastructure. Instrumentation and mea-
surement of the performance of parallel applications and the analysis of multi-experiment performance data make it
possible to characterize the performance for software variants of a parallel code over a range of runtime and problem
parameters. From this information, models of performance for CQoS purposes can be created. However, the quality of
the models strongly depends on the robustness of the performance system and its integration in a parallel programming
methodology.

In addition to extensions of TAU’s instrumentation and measurement capabilities, two advances in performance
data analysis are important preliminary results. CQoS will depend on the value of performance knowledge obtained.
The Performance Data Management Framework (PerfDMF) [34] was developed to provide for management and query
of multi-experiment parallel profile data. PerfDMF enables the population of a multidimensional performance space
from experiments and the analysis across data sets that lead to CQoS model creation. The Performance Explorer (Perf-
Explorer) tool [35] is a performance data mining framework that uses PerfDMF. PerfExplorer supports several analysis
types, including comparative, cluster, dimension reduction, and correlation analysis. PerfDMF and PerfExplorer will
provide the basis for developing CQoS infrastructure for performance analysis.

The second area of preliminary work reflecting support for CQoS research and development in CCA is our ex-
tension of TAU for performance monitoring of CCA component software [46]. TAU now provides the ability to in-
strument and measure the performance of CCA components and applications through a CCA-compatible performance
component with its event creation and measurement interface, and component measurement ports and proxies [67]. A
CCA performance monitor component and “mastermind” component were created to demonstrate runtime query of
component performance state and modeling [55].

In addition, recent enhancements have been made in TAU’s measurement system to allow more observation of
functional aspects of a code’s execution. To the extent that the measurement infrastructure can manage both functional
and performance data, this infrastructure will be important for the integration of multiple CQoS metrics.

6.3 Software Quality through Contracts

Additional work has focused on software quality through runtime verification of basic interface contracts. Semantic
annotations — integrated into the SIDL/Babel language interoperability toolkit [42] — are currently limited to the
specification of constraints on the input and output of method calls and object properties. Efforts thus far have con-
centrated on exploring the impact on performance and failure detection effectiveness of a variety of traditional and
experimental enforcement heuristics through simulation [19] and experimentation [19–21].

7 Conclusions and Future Work

This paper discussed some challenges in high-performance combustion, quantum chemistry, and accelerator simula-
tions, each of which requires a means to compose, substitute, and reconfigure software so that tradeoffs can be made
dynamically during runtime among performance, precision, underlying models, and reliability when choosing among
available component implementations and parameters. We introduced our approach to tackling these issues by building
infrastructure for computational quality of service (CQoS), including tools for both measurement/analysis and control
infrastructure. We also discussed how component-based design and the Common Component Architecture provide a
strong foundation for this work.

Our overall strategy for future work will be based on incremental progress in the design and implementation
of CQoS support, initially with a focus on developing the CQoS testbed introduced in Section 5.4 with simplified
representative cases drawn from the three motivating applications and exploring canonical problems. The middle and
later stages of our work will extend to more complicated application scenarios; we will also increase the level of
automation and make CQoS support more generally applicable to component applications.
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